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Abstract
The threat of video fingerprinting attacks poses significant privacy
concerns. These attacks can identify streamed videos with high
accuracy despite the use of encryption, leveraging both heuristic-
based and deep learning techniques. However, the real-world effec-
tiveness of such attacks remains underexplored, as most research
assumes ideal conditions. In this paper, we address the challenges
posed by variable network conditions and live-streaming latency,
which complicate the attacker’s ability to collect useful training data.
First, we evaluate several deep learning model architectures against
video data under diverse network conditions, including two adap-
tations of existing website fingerprinting attacks tailored to video
that we show boast notable improvements over the base attacks and
previous state-of-the-art video fingerprinting attacks. Second, we
introduce two augmentation techniques and demonstrate that they
substantially enhance attack performance in suboptimal conditions,
without knowledge of the victim’s live latency. Finally, we analyze
the effects of data limitations such as observation time, dataset
size, and training time. Overall, our work provides new insights
into the impact that several real-world challenges have on attack
accuracy, presents new and improved attacks, and details two aug-
mentation techniques that can further boost the performance of the
new attacks. Combined, these significant advancements highlight
the urgent need for effective defense mechanisms.
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1 Introduction
People and society at large are increasingly reliant on online video:
streaming now accounts for the majority of Internet traffic [58] and
represents a major source of many people’s daily news [36, 44, 49]
and other information. At the same time, it has been demonstrated
that video fingerprinting attacks can identify streamed videos with
high accuracy. Even simple heuristic-based attacks are rather effec-
tive [23, 55, 56], and deep learning techniques further improve the
prospects for an attacker [1, 4, 40, 59]. This has concerning impli-
cations for individuals who desire privacy as well as organizations
and governments that require secure communications.

Despite the clear threat that video fingerprinting attacks pose,
there is, as of today, limited understanding of how successful such
attacks can be in real-world scenarios, as most video fingerprint-
ing research assumes ideal attack settings. Though some authors
have analyzed, for example, the inherent difficulty of collecting
datasets that afford high classifier accuracy when targeting users
that have different setups and network conditions [10, 32, 34], these
works focus specifically on website fingerprinting. Due to the na-
ture of streaming traffic and its dependence on client and network
state, video fingerprinting presents particular challenges that both
amplify and transcend those considered in existing studies.

Almost all video players employ some form of adaptive bitrate
streaming, a performance optimization in which the requested
video content varies based on, for example, the client’s buffer status
and available network capacity. The result is a unique traffic pattern
– which is highly dependent on network conditions – when the
same video is watched multiple times. This represents a substantial
challenge for an adversary, especially one that is unable to collect
training data under the same conditions as the victim. Furthermore,
in the case of live streaming, variations in live latency (the delay be-
tween content distribution and playback) can cause temporal offsets
between the adversary’s training data and monitored streams.

Contributions:We take three major steps to address these un-
considered challenges. First, to better understand the impact that
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variable network conditions and the victim’s live latency have on
attacks, we evaluate several different deep learning model architec-
tures against video data collected in various network conditions.
These include the previous state-of-the-art video fingerprinting
attack; two noteworthy website fingerprinting attacks; and custom
adaptations of these attacks, which feature video-tailored input
formats and boast notable improvements over the base attacks and
existing video fingerprinting attacks.

Second, to address the shortcomings of the attacks in difficult
conditions, we present two augmentation approaches that signifi-
cantly increase performance (1) in suboptimal and variable network
conditions and (2) when the adversary does not have knowledge
of the victim’s live latency. The augmentations can be used both
separately or in combination, and we show that they provide signif-
icant benefits when used along with our adapted attacks. They also
offer broad insights into how video fingerprinting models can be
improved to account for protocol-specific features, which may be
useful when targeting different streaming standards or developing,
for example, zero-shot classifiers for live streaming.

Finally, we complement our evaluations by considering the im-
pact of data limitations, such as observation time, dataset size, and
training time. These results highlight that the attacks only need
limited samples over relatively short time durations (compared to
a typical video streaming session) to achieve high attack accuracy
and that the accuracy of our adapted attacks increases considerably
with the number of epochs used during training, allowing us to
significantly outperform the previous state-of-the-art.

Outline: Section 2 provides background on traffic analysis and
video streaming. Section 3 presents the challenges and limitations
examined in the paper. Sections 4 and 5 introduce the datasets and
attacks used in the paper, followed by Section 6, which presents
evaluations of the attacks in a variety of challenging conditions.
Section 7 describes two augmentation approaches to mitigate the
impact of the challenging conditions, and Section 8 portrays the
effects of data limitations. Section 9 concludes the paper.

2 Background and Related Work
2.1 Traffic Analysis
In the context of computer networks, traffic analysis refers primar-
ily to the deduction of information from encrypted data streams.
One prominent application involves determining the contents of a
stream, a technique known as fingerprinting.

Website Fingerprinting: A particularly well-studied example
is website fingerprinting (WF), in which a local, passive adversary
attempts to deduce which websites a targeted user is visiting by
monitoring their connection to an anonymous communications
service, such as a VPN or Tor [15]. The adversary typically collects
network traffic traces consisting of packet metadata, such as di-
rections, timestamps, and sizes, and uses them to train a classifier.
In the rudimentary closed-world evaluation setting, the traces col-
lected correspond to websites of interest, and the user is assumed
to only ever visit those websites. Conversely, in the more realistic
open-world setting, traces must be gathered for a monitored set of
websites and an unmonitored set, with examples of websites that
the adversary is not interested in. After training, the adversary
classifies traces collected from the victim’s connection.

While primitive WF attacks [27, 29, 30, 47] involved heuristic
algorithms and basic machine learning techniques applied to a
plethora of manually crafted features, modern attacks [7, 14, 33, 54,
57, 60, 62] are based on deep learning and operate on low-level rep-
resentations of raw network traces. Rimmer et al. [57] were the first
to use a Convolutional Neural Network (CNN) to create a WF at-
tack that surpassed the previous state-of-the-art. Since then, CNNs
and other deep learning models have become a major focus, with
continual improvements thanks to evolving deep learning architec-
tures. Two noteworthy examples are Deep Fingerprinting (DF) [62],
which achieves high accuracy using only sequences of packet direc-
tions; and the more recent Robust Fingerprinting (RF) [60], which
improves over DF by employing time series of packet counts. In this
work, we evaluate the viability of these two architectures against
video streams and adapt them to improve their effectiveness.

In tandem with the development of better attacks, researchers
have begun to investigate the real-world challenges that hinder their
viability [10, 32, 34] and presented techniques to enhance classifier
performance in difficult scenarios [5, 42]. Much research effort
has also been invested in defending against the WF threat: several
different defense approaches, such as random distortion [20, 35, 50],
trace regularization [9, 18, 31], imitation [45, 69, 70], adversarial
machine learning [21, 43, 53], and traffic splitting [13, 28] have been
evaluated, each with its own unique tradeoff between overhead and
protection [41]. Similarly, the continual arms race of attacks and
defenses has led to the introduction of frameworks that allow for
dynamic selection and synthesis of defenses [22, 48, 51, 72].

Other Applications: Traffic analysis can also harm user pri-
vacy in scenarios beyond website fingerprinting. These including
identifying specific subpages visited within a website [24, 61]; deter-
mining messaging traffic details and app usage [6, 12, 19, 39, 65]; ex-
tracting VoIP transcripts and voice assistant activity [2, 3, 8, 37, 71];
fingerprinting live streams via associated chat traffic [25]; and more.

2.2 DASH Streaming
The most ubiquitous method of streaming video is Dynamic Adap-
tive Streaming over HTTP (DASH) [64], with major players such
as Netflix [56] and YouTube [76] using variations of the standard.
To host a video for DASH streaming, a service provider encodes
it several times, each with a different target bitrate (quality). They
then break up the produced representations into fixed-duration seg-
ments. A Media Presentation Description (MPD) containing details
about the available segments at each quality is requested by clients
wishing to stream the video; subsequently, segments are requested
individually. The quality of the requested segments may change
over time due to rules based on, e.g., throughput estimation and
buffer state – this is known as adaptive bitrate streaming (ABR).

Critically, videos are typically encoded using a target average
bitrate for performance reasons; this is known as variable bitrate
encoding (VBR). As a result, all segments have the same duration,
but their sizes depend on their content: segments corresponding
to still images are small, while those containing significant motion
or details are larger. As exemplified in Figure 1, this causes any
given video to have a unique, identifying sequence of segment sizes,
enabling video fingerprinting attacks. In this paper, we evaluate all
attacks against DASH traffic with 2-second segments.
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Figure 1: Throughput of 3 video streams using DASH.

2.3 Video Fingerprinting
Video fingerprinting involves a local, passive adversary situated
between a client and video server, whose goal is to identify the
videos being watched over the encrypted connection. This scenario
is depicted in Figure 2. While training data can be collected in ad-
vance for real-time classification of on-demand video, we focus on
the more challenging scenario of live streaming. The experiments
we perform mimic an adversary who watches multiple live streams
to collect training data while simultaneously monitoring a victim’s
traffic, saving traces for later analysis. We remark that our contri-
butions are also applicable to the video-on-demand setting, and
we leave development of zero-shot classifiers for live streaming to
future work, noting that the insights garnered from our augmenta-
tions may serve as a valuable component of such efforts.

Video fingerprinting differs from WF primarily because video
traffic has rather distinct characteristics: one noteworthy differ-
ence is the substantial increase in the length of streams that are
encountered in video fingerprinting, a result of the fact that loading
a website typically only takes a few seconds, whereas watching a
video is usually done during a much longer period of time. Also,
since video streams involve individual segment transmissions, they
differ markedly from website traces and can be far more distinctive.
Perhaps more critically, video fingerprinting can in certain cases be
in a closed world: if a user employs a direct connection to a video
server, the set of possible videos can be narrowed down by observ-
ing, e.g., the destination IP address and DNS lookups. This would
likely prove fruitful against providers that have a bounded and
fairly stable video catalog; only make videos available for a limited
time period (such as due to capacity, cost, or copyright reasons);
or (when considering live streaming) have few concurrent streams.
Video metadata may also be useful: for example, live streams with
no viewers do not need to be considered by an adversary.

Similarly to WF attacks, many video fingerprinting attacks [16,
17, 23, 38, 55, 56, 73, 74] use heuristic algorithms and manually
crafted features based on the periodic pattern of video traces. Though
often highly effective, it has recently been shown that these attacks
are not robust against defended traffic or in variable bandwidth
conditions [26]. Attacks based on deep learning [1, 4, 40, 59], while
opaque and less interpretable than simple heuristic attacks, show
greater promise in these settings: the state-of-the-art attack, Beauty
and the Burst (BnB) [59], achieves nearly perfect performance in a
small closed world and excels even against defended traffic [26]. It
is also effective with good bandwidth conditions in a larger open
world [67]. Due to the attack’s success and its foundational role
for subsequent deep-learning based video fingerprinting work, we
compare it against our adapted attacks throughout the paper.

Though a few defenses [11, 26, 66, 75] against video fingerprint-
ing have been proposed, existing work has not emphasized the
construction or circumvention of defenses. Instead, recent progress
in the video fingerprinting community has been related to the

client Internet video serveradversary

Figure 2: Video fingerprinting threat model.

variance of video traffic. For example, several authors [23, 76] have
used heuristics to account for the effects of ABR on undefended traf-
fic. We demonstrate how augmentation can improve results against
video traces collected in different network conditions.

3 Challenges and Data Limitations
We begin by describing the real-world challenges that a video finger-
printing attacker may face. We focus on video-specific challenges
while also considering some general fingerprinting challenges and
their manifestations in the context of video fingerprinting.

3.1 Primary Video Fingerprinting Challenges
C1) Adaptive Streaming and Varying Network Conditions:
Almost all video streaming services today are implemented using
DASH or a variant thereof, where performance is optimized by
dynamically adjusting the quality of requested segments based on
current network conditions and client capabilities (ABR).

While DASH ensures that users with good network conditions
can obtain video data at the highest quality and clients with sub-
optimal connections can still attain seamless playback at a lower
quality, the heterogeneity of video qualities due to quality switches
throughout a streaming session presents a unique challenge to the
video fingerprinting adversary, which WF attacks do not need to
consider. First, as a consequence of the flexibility that DASH enables,
the sequence of segment sizes may be quite different depending
on network conditions. The adversary can therefore not rely on a
unique segment size sequence to fingerprint a video stream.

Second, variable bandwidth conditions can cause segment down-
loads to take longer, sometimes resulting in spillage, where a seg-
ment download time exceeds the segment duration and one segment
download overlaps the next. This makes it more difficult to rec-
ognize when segment downloads start and end, as illustrated in
Figures 3 and 4 using sample video traces. For example, looking
at the timing of packets of different sizes (Figure 3), we observe
clear bursts in the case of high constant bandwidth, regardless of
whether we consider large received packets (from server to client)
or smaller sent packets (requests and acknowledgments from client
to server), whereas packets are less clearly distributed when band-
width varies over time, making it hard to detect when a particular
segment download starts and ends. This is also apparent when
looking at the inter-packet delays for the constant bandwidth sce-
nario (Figure 4(a)), where small values are typically observed within
segment transmissions and long gaps are present between them. In
contrast, in the variable bandwidth case (Figure 4(b)), there is no
clear pattern, as many segment downloads are merged.

C2) Hard to Collect Training Data Under Same Network
Conditions as Victim: Since an attacker can seldom run a video
player from the same vantage point as the victim, network condi-
tions typically differ between the training traces collected by the
attacker and those gathered from a victim’s connection. Thus, it is
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Figure 3: Comparison of packet sizes over time.
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Figure 4: Comparison of inter-packet delays over time.

important to understand the impact that such differences have on
the accuracy of attacks. Due to the ABR properties of DASH, this
challenge is especially demanding in the video streaming context.

C3) Different Live Latency: In the case of live streaming,
clients will typically not share the same live latency (offset between
content distribution and playback time). As a result, in contrast
to the case of fingerprinting in the website and video-on-demand
contexts, there is no exact starting point of a trace that can be used
to align the attacker’s training data with data collected from a vic-
tim’s connection. As shown in this paper, this presents a unique
challenge that can significantly impact attack accuracy.

3.2 Impact of Video-Related Data Limitations
Good training data is important to fairly and thoroughly evaluate
attacks. Here, a central difference between the video fingerprinting
and WF communities is their approach to limiting training data.
WF attacks have been designed to achieve strong accuracy with few
training samples [46, 63, 68]. In contrast, video fingerprinting at-
tacks place a greater emphasis on the length of network traces, with
the amount of streaming time required to correctly characterize a
network trace playing a critical role [55, 56]. To understand the ro-
bustness of attacks, it is thus important to study the impact of both
sample size and trace duration on video fingerprinting accuracy.

L1) Observation Periods: In contrast to website downloads,
which typically happen over a short time period, clients may watch
a video stream for an extended period of time. However, not all
clients select to view for the same duration, and an attacker may
not want to devote more resources than necessary to identify which
stream a client is watching. To understand the impact that observa-
tion time has on prediction accuracy, we evaluate each considered
model using traces of varying playback duration.

L2) Number of Training Samples: Similar to the website con-
text, the number of training samples can play an important role in
the accuracy of different models. To measure the effect of this, we
evaluate each model under a range of sample sizes.

L3) Limited Computing Resources: With the best attacks
being based on deep learning and involving significant training, it
is important to understand how many epochs are needed to achieve
acceptable accuracy and at what point increasing the number of
epochs is detrimental to the accuracy of attacks due to overfitting.
We provide insights into the influence of training time by evaluating
each model with varying numbers of epochs.

3.3 Other Challenges
There are also a few general challenges not considered here.

Defenses: To protect the privacy of video streams, the client
and/or server may employ defenses [11, 26, 66, 75]. In this paper,
we do not consider defenses for several reasons. First, our focus is
to understand the inherent vulnerabilities in video streaming traffic
under challenging conditions without the influence of additional
defensive measures. Second, the effectiveness of defenses varies
widely, and incorporating them would introduce variability that
could obscure the core findings. Finally, by excluding defenses, we
provide a baseline analysis that can serve as a foundation for future
studies that may incorporate and evaluate defenses.

Open World: Video fingerprinting can occur in a closed world,
since a client may connect directly to a video server, resulting
in a restricted set of potential videos. However, if an anonymous
communications service such as a VPN or Tor [15] is used, or in the
case of larger streaming services and those with volatile catalogs,
the adversary may not have this advantage. Thus, the closed world
is a realistic assumption for smaller video platforms with relatively
static video catalogs or, in the case of live streaming, if the number
of concurrent active streams is limited.We focus on the closedworld
in this work, as limiting the inherent difficulty of the evaluations
better captures the extent to which our addressed challenges affect
attacks. We note, though, that the insights we present may also
prove valuable for future open-world studies.

4 Datasets
To evaluate how different network conditions may impact a video
fingerprinting attacker, we use the LongEnough dataset and an
extended version of the LongEnough-variable dataset [26]. LongE-
nough contains network traces of 100 live-streamed videos with a
constant bandwidth of 100 Mbps. Each video is streamed for up to
10 minutes at 10 different starting points (60-second shifts), with
10 samples per shift, resulting in 100 ×∑10

𝑖=1 𝑖 × 10 = 55 000 min-
utes ≈ 917 hours of streamed video traffic. LongEnough-variable is
collected similarly but under variable bandwidth conditions. Each
sample is gathered using a unique variable bandwidth pattern based
on a real-world LTE trace [52], which is scaled by a factor of 8 to
better align the peaks with the constant bandwidth case.

In this paper, we expand on the previously collected LongEnough-
variable dataset [26] by collecting variable bandwidth traces scaled
by factors of 1, 2, and 4. Each scale contains an additional 917 hours
of streamed traffic. Regardless of the starting point of the stream,
the last minute of data collection always contains the same video
content; therefore, to obtain the maximum number of samples
per video (i.e., 100), we extract and use only the last minute of
each stream in our analysis. We note also that the videos in both
LongEnough and the extended version of LongEnough-variable are
streamed at up to three different available qualities: 1000 kbps (1K),
2000 kbps (2K), and 4000 kbps (4K). For a detailed description of
the variable bandwidth conditions and dataset collection process,
we refer the reader to Appendix B in Hasselquist et al. [26].

5 Evaluated Attacks
To evaluate the impact of the aforementioned challenges, we use five
attacks. First, we evaluate the WF attacks DF [62] and RF [60]: since
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they operate on low-level traffic representations, they are also appli-
cable to video streams. Given the distinct nature of video streams,
though, they do not reach maximum potential by default. To in-
crease the attacks’ suitability for video streams, we thus present
two adaptations that retain the same model architectures. We also
test the state-of-the-art video fingerprinting attack, Beauty and the
Burst [59], using Hasselquist et al.’s implementation [26]. We use a
0.9-0.1 train/test split and five-fold cross-validation for all attacks.

5.1 WF Attacks
Deep Fingerprinting (DF): The first CNN-based WF attack that
we evaluate is DF, presented by Sirinam et al. [62]. DF uses a 1×5 000
input matrix with a directional traffic representation: each index
represents a single packet from the client’s perspective (outgoing
+1, incoming −1), for the first 5 000 packets in a trace. Shorter traces
are padded with zeros, and longer traces are truncated.

Robust Fingerprinting (RF): The second WF attack we evalu-
ate is RF by Shen et al. [60]. RF incorporates the proven efficiency of
CNNs for WF attacks while outperforming existing techniques by
employing a new input format. Shen et al. [60] refer to this as the
Traffic Aggregation Matrix (TAM), a matrix that separates packets
into two different rows based on their directions and accumulates
the number of packets within specific time intervals, or buckets,
corresponding to the matrix columns. For WF, the size of the TAM
has been tuned to divide 80 seconds of traffic into a 2×1 800 matrix,
meaning that the buckets are 80/1 800 = 0.044 seconds long.

5.2 Video-Adapted Versions of WF Attacks
Video-Adapted DF (vDF): As shown by Hasselquist et al. [26],
5 000 packets capture only a few seconds of a video trace, and
DF’s performance can be significantly increased by using a larger
input size. However, while Hasselquist et al. opt to increase the
number of packets, we keep the model architecture of DF while
completely replacing its input format. We employ a solution similar
to RF’s TAM: instead of using the first 5 000 packets, video traces
are divided into 5 000 buckets, which each contain a sum of packet
sizes. When considering 60-second traces, each bucket comprises
the sum of packet sizes over 60/5 000 = 0.012 seconds.

Observe that, contrary to the original version of DF, we consider
the sizes of packets in addition to their directions. Also, we do not
limit the attack to 5 000 buckets; instead, we tune the number (and,
consequently, duration) of buckets. Figure 5(a) depicts the accuracy
of vDF as a function of the number of buckets each 60-second trace
is split into for both the LongEnough and LongEnough-variable
datasets. While accuracy remains fairly stable with high bandwidth,
it increases, peaks around 4 000 buckets, and drops at bandwidth
scales 1 and 2. This may suggest that low granularity can obscure
informative traffic patterns, while very fine-grained buckets fail
to capture important packet- and segment-level relationships. We
select 4 000 buckets for the remainder of the paper, resulting in
60/4 000 = 0.015 second buckets for a 60-second trace.

Video-Adapted RF (vRF): As with DF, we adapt RF’s input
matrix to better utilize network traces. First, we find through pre-
liminary evaluations that taking packet sizes into account has a
positive effect, so we use packet size sums rather than packet counts
in the buckets. Second, RF is tuned to encompass 80 seconds of
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(b) Video-Adapted RF (vRF)

Figure 5: Accuracy of vDF/vRF with varying bucket count.

traffic by default; we change this to 60 seconds to tailor the attack
to our evaluations with the LongEnough and LongEnough-variable
datasets. Finally, we determine the bucket duration that yields max-
imum accuracy; Figure 5(b) visualizes accuracy as a function of
bucket count. In contrast to vDF, high granularity results in a sig-
nificant accuracy reduction against constant bandwidth and scale
1, with less volatile performance in intermediate conditions. The
reduction in accuracy against constant bandwidth and scale 1 may
be accounted for by model architecture differences: vRF appears
better equipped to handle high-level patterns than fine-grained
information, as the attack is less stable with more buckets when
segments are clearly delimited or with many rerequests and quality
switches. Regardless, peak accuracy is around 400 buckets in every
test, so we use this setting throughout the paper; the buckets are
thus 60/400 = 0.15 seconds long for a 60-second trace.

5.3 Video Fingerprinting Attack
Beauty and the Burst (BnB): Schuster et al. [59] propose BnB,
a CNN-based video fingerprinting attack. BnB uses the same ap-
proach as RF in its representation of network traces, though its input
matrix is 3×240 rather than 2×1 800: an extra row is present to com-
bine incoming and outgoing packets, and buckets are 60/240 = 0.25
seconds long. Note that the attack is exhibited with different epoch
values based on the service provider that the evaluation dataset is
collected from. The values used are within the range [150, 1 400];
based on preliminary testing, we choose 500 epochs. This is signif-
icantly greater than the number of epochs used in the other four
attacks: the original versions of DF and RF feature an epoch value
of 30, which we elect to keep unchanged in most of our experiments
to isolate the effects of our changes to the attacks’ input formats.

6 Evaluated Conditions
We begin by evaluating the featured attacks in a multitude of vary-
ingly challenging conditions.

6.1 Good Constant Bandwidth Conditions
Before considering each of the primary video fingerprinting chal-
lenges (C1–C3) outlined in Section 3.1, we compare attack perfor-
mance in good conditions. Specifically, we direct our focus to the
case in which the attacker can collect both training and evaluation
data with the 100 Mbps constant bandwidth of the LongEnough
dataset. With the exception of the default WF attacks (DF and RF),
all attacks have greater than 98% accuracy: 93.2% (DF), 61.8% (RF),
98.2% (vDF), 99.3% (vRF), and 99.9% (BnB).
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Main Observations:We note that all attacks perform very well
in good conditions, with the exception of default RF - this is likely
due to its fine-grained buckets, as discussed previously. Also, our
adapted attacks (vDF and vRF) perform considerably better than
their corresponding defaults (DF and RF). These results highlight the
significant privacy threat that video fingerprinting attacks represent
as well as the importance of application-specific attacks.

6.2 Known but Variable Bandwidth (C1)
As outlined in Section 3.1, the mechanics of DASH under variable
bandwidth conditions bring forth a unique challenge in video fin-
gerprinting: attacks typically leverage three low-level features –
packet times, sizes, and directions – all of which are dependent on
session-specific network conditions. First, segment transmission
durations (and, thus, when the packets making up segments are
delivered) are dependent on the current bandwidth available to the
client. Second, packet sizes depend on the size of the segment being
transmitted, which itself depends on the available bandwidth and
how the client’s ABR algorithm responds to it. Segment size also
determines how many packets are needed to transmit a segment:
two packets with the same index in different traces of the same
video may be sent in different directions. Given the significant im-
pact of bandwidth on network traces, it is important to understand
how resilient attacks are to bandwidth variations.

We first consider an attacker targeting a user with known band-
width conditions and assume the attacker can collect training data
under similar conditions (e.g., traces with the same high-level band-
width variability characteristics). As an example, the attacker could
approximate the target’s bandwidth conditions by measuring the
throughput of collected network traces and gather training data
accordingly. To benchmark our featured attacks in this setting, we
use traces from the same bandwidth conditions for both training
and evaluation. Table 1 presents the results for the LongEnough and
LongEnough-variable datasets. Except in the case of default RF’s
lower accuracy against constant bandwidth, the attacks degrade as
bandwidth conditions worsen. We also observe that our adapted
versions (vDF and vRF) are most robust to poor network conditions.

Main Observations: Even if the attacker knows the bandwidth
conditions of the victim, attack accuracy decreases markedly as net-
work conditions worsen. This is likely because, while the training
and evaluation data contain similar numbers of quality switches,
their locations are not the same; this suggests that the attacks re-
quire more varied training data. Though not immune to this effect,
our adapted attacks are most robust to poor network conditions.
Also, as we show later in the paper, our adapted attacks can achieve
further performance gains by way of additional training, allow-
ing us to perform even better by increasing the number of epochs
(Section 8.3) and/or using our augmentation-based extensions (Sec-
tion 7). For example, vRF’s accuracy against Var-1 increases from
58.5% to 86.0% when simply increasing epochs from 30 to 200.

6.3 Unknown and Variable Bandwidth (C2)
Beyond classifying traces when their bandwidth conditions are
known, an attacker may be faced with the more challenging sce-
nario of unknown bandwidth conditions. This means that the at-
tacker is not able to guarantee that the training and evaluation data

Table 1: Accuracy (%) under different bandwidth conditions.

WF Attacks Adapted Versions
DF RF vDF vRF BnB

Const 93.2 61.8 98.2 99.3 99.9
Var-8 89.6 79.8 96.6 97.8 97.6
Var-4 69.6 78.2 94.9 95.2 92.5
Var-2 39.4 69.0 85.9 79.8 73.7
Var-1 29.4 45.8 69.8 58.5 51.6

are collected under the same conditions. Such a situation may arise,
for example, when bandwidth conditions fluctuate significantly
over time or the attacker has multiple targets and simply cannot
dedicate additional data collection and training effort to a single
one. To test the attacks in this more challenging setting, we train on
each dataset and evaluate on both the dataset used in training and
all other datasets. Table 2 visualizes these results for our adapted
attacks and BnB, as these perform best when faced with C1.

Main Observations: While we observe that non-trivial accura-
cies can be achieved when training and evaluating on traces from
different network conditions, it is clear that the best accuracies
are obtained under the same conditions as the targeted client and
that performance worsens substantially with bigger differences in
network conditions. These results highlight that lack of access to
similar network conditions as the attacked client (C2) presents a
significant challenge to the attacker. Nonetheless, we find that our
adapted attacks (vDF and VRF) are generally more robust to being
trained using the wrong bandwidth conditions than BnB, e.g., as
seen by higher off-diagonal values. We note that, in such a case, it
is typically better to train on traces collected under slightly worse
conditions than slightly better conditions: too few quality switches
in the training data can reduce the attacks’ resilience to evaluation
traces with more bandwidth variability, while an excessive amount
obscures relationships between adjacent segments. Motivated by
these observations, Section 7 presents bandwidth augmentation
techniques addressing the challenge presented by not having access
to traces collected under similar conditions as the client.

6.4 Offset (C3)
In live streaming, there is no guarantee that all clients are in sync,
since live latency depends on, for example, the configuration of
the video player and available network capacity. Thus, attacks that
rely implicitly or explicitly on the timing of data relative to trace
start may struggle. To evaluate the resilience of the attacks to this
challenge, we apply offsets to the testing data.

To enable the application of offsets to our dataset, we utilize
a 40-second sliding window that we move within the 60 seconds
available from each trace. When no offset is applied, the middle 40
seconds are used; the preceding and following 10-second intervals
are discarded. An offset of −10 slides the window to the first 40
seconds, and an offset of 10 corresponds to the last 40 seconds.

Figure 6 highlights the accuracy of each attack when training
on the LongEnough dataset with no offset (i.e., using the data the
attacker would see in their training sessions) but applying an offset
to the evaluation data (capturing that the client may not have the
same offset). The minimum and maximum attack accuracy are in
the bottom right corner of each plot, using the format min/max.
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Table 2: Accuracy (%) when training and evaluating under different bandwidth conditions.
(a) vDF (b) vRF (c) BnB

Training Testing dataset Testing dataset Testing dataset
data ↓ Const Var-8 Var-4 Var-2 Var-1 Const Var-8 Var-4 Var-2 Var-1 Const Var-8 Var-4 Var-2 Var-1

Const 98.2 9.4 3.4 2.2 1.2 99.3 41.9 16.6 1.1 1.0 99.9 94.0 18.5 22.6 2.2
Var-8 96.7 96.6 85.0 39.2 15.0 98.3 97.8 84.0 39.0 14.4 99.6 97.6 42.5 33.0 4.5
Var-4 93.7 95.7 94.9 65.0 32.3 96.1 97.3 95.2 58.9 29.8 9.5 10.0 92.5 6.6 3.4
Var-2 20.7 91.1 92.6 85.9 54.2 84.5 92.7 92.1 79.8 48.3 22.1 23.3 28.2 73.7 10.1
Var-1 4.5 62.2 83.2 77.2 69.8 6.5 58.4 77.4 69.7 58.5 21.9 38.4 30.0 29.0 51.6
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Figure 6: Accuracy when varying the evaluation offset.

Main Observations: All attacks except vRF degrade substan-
tially even at small offsets. vRF is somewhat resilient to offsets, with
accuracy staying well above that of the other attacks for offsets as
large as 10 seconds: this may be due to the use of coarse-grained
windows, which capture higher-lever information about traces.
Also, as most clearly seen for vRF, accuracy does not decrease uni-
formly as offset increases, suggesting that vRF is more robust to
temporal offsets of a wide range. However, the large drop in accu-
racy between the best and worst offsets suggests that data with
varying offsets is needed during training. We address this through
our offset augmentation techniques (Section 7).

6.5 Variable Bandwidth and Offset (C2 + C3)
Further complicating the challenges these suboptimal conditions
present on their own, they might also be encountered at the same
time. Since combining our previously examined conditions presents
a vast amount of possible combinations and vRF is the only attack
with a reasonable resilience to offsets, we only use vRF to test the
combination of variable bandwidth and offsets. Figure 7 presents
the results when training and testing on our featured datasets.

Main Observations: In general, we observe similar patterns as
before: lower bandwidth scales are more challenging, and accuracy
decreases non-uniformly as offset increases. It is still better to train
on a slightly lower bandwidth scale than a higher one, but we note
that the negative impact of large offsets is more pronounced at low
bandwidth scales. As we show in Section 7.5, our two augmentation
techniques can be combined to handle this challenge.

7 Augmentation-based Attack Extensions and
Their Improvements

As seen in the previous section, two of the primary challenges we
consider (C2 and C3) result in significant reductions in the accuracy
of existing attacks. In the case of C2, it is important to have training
data with similar numbers and locations of quality switches as the
evaluation data. To solve C3, the attacks must be trained on traces
with varying offsets. In light of these observations, we present two
augmentation strategies (Sections 7.1 and 7.3) that successfully
improve attack performance both separately (Sections 7.2 and 7.4)
and in combination (Section 7.5).
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Figure 7: Accuracy of vRF when varying the evaluation offset.
Here, training datasets are along the y-axis and evaluation
datasets on the x-axis.

7.1 Variable Bandwidth Augmentation
To counteract the decrease in accuracy an attacker might face when
targeting a client with an unreliable connection, we develop an
augmentation strategy that morphs traces collected under stable
conditions (i.e., with minimal quality switches) to imitate their
variable bandwidth counterparts. At a high level, the augmentation
transforms each trace in LongEnough into a sequence of (segment
size, segment download start time) tuples. An arbitrary number of
new, corresponding traces can then be generated by combining this
information with values sampled from observed distributions of
quality switches, segment transmission durations, and inter-packet
delays. We first describe how we calculate these distributions.

Quality Switches: To calculate the desired frequency of quality
switches in generated traces, we count their occurrences, along
with the number of segments transmitted, for each bandwidth scale
in LongEnough-variable. We also determine betweenwhich qualities
switches should occur based on the observed switches. Figure 8
summarizes this data in the form of state machines, in which an
action is taken every time a segment is transmitted.

Segment Transmission Durations: The bursty nature of video
traces makes it easy to calculate, in the absence of spillage, how
long it takes to transmit each segment. In the case of LongEnough-
variable, though, poor bandwidth can cause segment transmissions
to reach or even exceed 2 seconds. This creates a continuous data
stream from which it is impossible to match packets with segments
strictly based on packet timestamps. We address this by utilizing the
predictable pattern of client-side requests: one or two small packets
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Figure 8: Quality switch state machines.

are sent by the client at the beginning of each segment transmis-
sion. This insight allows us to determine all segment transmission
durations in the variable bandwidth datasets.

However, determining the start times of segment transmissions
based on requests presents additional difficulties, specifically per-
taining to rerequests. Rerequests occur when a segment transmis-
sion is partially completed but the available bandwidth changes
drastically enough to warrant an immediate quality switch. To filter
out rerequests, we use knowledge of how many requests a trace
should contain. We iteratively remove one appropriate request at a
time until the trace contains the correct amount. The request to be
removed is chosen by calculating the time between each request
and removing the request that is closest to its predecessor.

After filtering out rerequests, we calculate the durations of seg-
ment transmissions.We do this by calculating, for each segment, the
time between the initial request and the last packet before the next
segment request; for the last segment of each trace, we calculate
the time between the request and the last packet in the trace. We
iterate through each variable bandwidth dataset and use 1 of the 10
samples for each offset, storing the calculated segment transmission
durations in a file. This results in 100 ×∑10

𝑖=1 𝑖 × 1 × 30 = 165 000
durations (one minute comprises 30 segments) per bandwidth scale.

Normalized Inter-Packet Delays:We also require inter-packet
delays for the variable bandwidth datasets; we measure these si-
multaneously with segment transmission durations to avoid in-
cluding times between segments. We also normalize the measured
delays by, for each segment, calculating each inter-packet delay
𝑇 as well as their average 𝐴 and then storing the result of 𝑇 /𝐴.
The last 60 seconds of a trace in the variable bandwidth datasets
contain an average of 27 812 packets; thus, we collect approximately
100 ×∑10

𝑖=1 𝑖 × 1 × 27 811 ≈ 152 960 500 normalized delays.
Augmentation Implementation: The augmentation is per-

formed by iterating through the constant bandwidth traces. For
each trace, the size of every segment transmission is accumulated
based on the bursty nature of the traces. The timestamp of the first

Table 3: Accuracy (%) of bandwidth augmentation and differ-
ences compared to training on constant bandwidth.

Testing datasetAttack Training
dataset Var-8 Var-4 Var-2 Var-1
Const 9.4 3.4 2.2 1.2
Aug-X 77.4 74.0 57.6 32.2vDF

+723.4% +2 076.5% +2 518.2% +2 583.3%
Const 41.9 16.6 1.1 1.0
Aug-X 92.6 80.9 58.9 27.5vRF

+121.0% +387.3% +5 254.5% +2 650.0%
Const 94.0 18.5 22.6 2.2
Aug-X 28.7 31.4 4.7 2.8BnB

-69.5% +69.7% -79.2% +27.3%

packet in each segment transmission is also stored, resulting in a
list of (segment size, start time) tuples for each trace.

The tuples are then iterated through on a trace-by-trace basis,
allowing for new, corresponding traces to be generated. During
each iteration, the current size is first scaled based on a quality that
is chosen according to the state machines presented in Figure 8.
After the size 𝑆 has been scaled, the number of packets 𝑁 needed
to transmit the desired amount of data is calculated via the formula
⌈𝑁 = 𝑆/1 448⌉. The number 1 448 is derived by taking the maximum
transmission unit (MTU) and subtracting the portion occupied by
TCP overhead (𝑂𝑇𝐶𝑃 ):𝑀𝑇𝑈 −𝑂𝑇𝐶𝑃 = 1 448, giving the maximum
amount of segment data that can fit in each packet.

This information is used to construct an artificial segment packet-
by-packet. A random segment transmission duration 𝑇𝑆 is selected
from the collection gathered from the variable bandwidth dataset
and used to calculate the average inter-packet delay: 𝑇𝑃 = 𝑇𝑆/𝑁 .
For each new packet, an inter-packet delay is chosen by scaling 𝑇𝑃
using the normalized delays: a normalized value 𝑉 is sampled and
used to calculate the actual delay via the operation 𝑇𝑃 ← 𝑇𝑃 · 𝑉 .
The start time for the current iteration determines when to send
the segment. If the previous segment was completely transmitted
before the current start time, we simply start transmitting at the
stored start time. Otherwise, we start transmitting the segment
when the previous segment transmission has completed.

7.2 Bandwidth Augmentation Evaluation
To determine the efficacy of our bandwidth augmentation, we gen-
erate four different augmented versions of the constant bandwidth
dataset, one to target each bandwidth scale. Table 3 highlights the
differences between training on the constant bandwidth dataset
and appropriate augmented datasets (Aug-X) when evaluating on
each variable bandwidth dataset. From here on, we consider only
our adapted attacks, as they are most suitable for all addressed chal-
lenges, and BnB for comparison, since it is the prior state-of-the-art.

In all cases, though especially at lower bandwidth scales, our
adapted attacks improve markedly as a result of the bandwidth aug-
mentation. vDF’s accuracy increases by 723.4% against Var-8 (9.4%
to 77.4%), and this difference rises as bandwidth scale decreases,
reaching 2 583.3% against Var-1 (1.2% to 32.2%). Similarly, vRF’s
accuracy is 121.0% higher against Var-8 with augmentation (41.9%
to 92.6%), and it is boosted by 5 254.5% against Var-2 (1.1% to 58.9%)
and 2 650.0% against Var-1 (1.0% to 27.5%). This shows that ensuring
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Table 4: Accuracy (%) when training on the constant bandwidth and augmented datasets and evaluating on all datasets.
(a) vDF (b) vRF (c) BnB

Training Testing dataset Testing dataset Testing dataset
data ↓ Const Var-8 Var-4 Var-2 Var-1 Const Var-8 Var-4 Var-2 Var-1 Const Var-8 Var-4 Var-2 Var-1

Const 97.8 9.4 3.4 2.2 1.2 99.3 41.9 16.6 1.1 1.0 99.9 94.0 18.5 22.6 2.2
Aug-8 73.3 77.4 58.9 30.5 11.9 93.5 92.6 71.8 38.0 13.0 23.4 28.7 11.5 5.1 2.9
Aug-4 86.4 87.4 74.0 44.6 21.8 93.5 92.9 80.9 47.9 20.7 4.1 5.2 31.4 8.6 3.8
Aug-2 60.2 84.8 82.6 57.6 31.7 89.1 90.6 85.4 58.9 29.6 3.9 3.3 55.8 4.7 3.1
Aug-1 66.2 80.5 75.4 55.2 32.2 79.9 90.0 82.9 55.0 27.5 5.3 2.7 65.8 4.6 2.8
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Figure 9: Accuracy when varying the number of copies per sample for bandwidth augmentation.

similar numbers and locations of quality switches are present in the
training and evaluation data significantly improves attack efficacy.

However, the results for BnB are mixed. Against Var-8, the high-
est bandwidth scale, its accuracy decreases by 69.5% with augmen-
tation (94.0% to 28.7%). Its accuracy also decreases against Var-2, by
79.2% (22.6% to 4.7%), and improves only marginally against Var-1.
The best accuracy is achieved when targeting Var-4, with a 69.7%
improvement (18.5% to 31.4%). Nevertheless, it is clear that BnB is
unable to take full advantage of the augmentation, likely because
its very coarse-grained buckets and simpler model architecture are
unable to completely represent the dynamics of quality switches.

In general, our adapted attacks (especially vRF) have rather high
accuracy against Var-8, and accuracy decreases as bandwidth scale
lowers. To further characterize this and to better understand the
impact of the attacker’s choice of augmentation option (i.e., Aug-X),
Table 4 showcases the results of training on the constant band-
width and augmented datasets and evaluating on every dataset. The
same high-level trend holds: accuracy decreases at lower bandwidth
scales. Interestingly, our adapted attacks achieve better accuracy
when training for a lower bandwidth scale than the evaluation
dataset vs. a higher one, but the opposite is true for BnB against
Var-8 and Var-2. Our adapted attacks are remarkably stable when
training for lower bandwidth scales, while BnB’s accuracy decreases
substantially except in the case of Var-4. Finally, an attacker that
can collect a network trace is also expected to be able to select a
nearby augmentation option, suggesting that the values reported
along the diagonal (and summarized in Table 3) are, in most cases,
the best predictor of what an attacker would see in practice.

We note that, due to the augmentation algorithm’s reliance on
randomly selected parameters, any given trace is unlikely to result
in the same augmented trace when used multiple times. This en-
ables increasing the size of the training dataset without monitoring
additional network traces. Figure 9 shows the results of applying
the augmentation to each trace multiple times to increase the size
of the dataset. While we observe diminishing returns, these results

show that up to a 10-15% further improvement in accuracy can be
realized by generating 20 augmented versions of each trace.

Furthermore, we highlight that it is unlikely that an augmented
trace will contain precisely the same quantity and timing of quality
switches as any evaluated trace, but our results suggest that the
mere presence of sufficient quality switches in varying positions
is beneficial to the models. Similarly, since we observe promising
results when training for lower bandwidth scales than the targeted
dataset vs. higher ones, it appears most important to have a certain
minimum number of quality switches in the augmented traces, but
too many may hide relationships between nearby segments.

7.3 Offset Augmentation
We next consider the accuracy decrease an attacker may suffer
when using differently offset network traces. We implement an
augmentation strategy for this scenario by duplicating network
traces and applying various offsets to them, iterating through each
trace and modifying packet timestamps. To enable the application
of offsets in our setting, only 40 seconds of the last 60 seconds
are used by the attacker. This allows us to evaluate the accuracy
of the attacks on offsets as big as 10 seconds in both directions, a
reasonable upper limit for a low-latency live stream.

We test four models that are based on the same approach. The
first model (𝐾 = 1) performs no duplications or offset applications.
The second model (𝐾 = 2) duplicates all traces once and applies a
10/3 second offset to the two resulting traces, once in either direc-
tion. That is, one trace’s packet timestamps will be incremented
by 10/3 seconds and the other’s will be decremented by 10/3 sec-
onds. The third model (𝐾 = 3) duplicates the original traces three
times: the four resulting traces will have 2- and 6-second offsets in
both directions. The fourth and final model (𝐾 = 4) duplicates all
traces seven times and applies 70/9, 50/9, 30/9- and 10/9-second
offsets in both directions. These values are chosen such that 2𝐾−1
offsets evenly split the available 20-second interval, from −10 to 10
seconds, into 2𝐾−1 + 1 partitions.
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Figure 10: Accuracy of offset augmentation when varying
the evaluation offset.

7.4 Offset Augmentation Evaluation
To test the efficacy of the different models, we generate offset
datasets by duplicating the constant bandwidth dataset 10 times
and applying a different offset in the range of −10 to 10 seconds,
with increments of 2 seconds, to each version. Figure 10 shows
the results of training after applying augmentation to the constant
bandwidth dataset and evaluating the attacks on the constant band-
width dataset (no offset) and all offset datasets.

Across all attacks and offset augmentation models, there is a
distinct peak in accuracy at offsets close to those included in the
training data (marked with dashed lines in Figure 10). vDF achieves
very high accuracy at the peaks, with larger dips between them
when𝐾 = 1 and 2; however, these fill in as more offsets are included
in the training data, and the attack reaches almost perfect accuracy
except with maximal offsets. Interestingly, vRF’s baseline accuracy
does not decrease uniformly as offset increases: due to its inherent
resilience to offsets (demonstrated in Section 6.4), it performs even
better than vDF, achieving at least 96% accuracy at all offsets when
𝐾 = 3 and 99% accuracy when 𝐾 = 4. This demonstrates the benefit
of including traces with varying offsets in the training data.

BnB, on the other hand, does not respond well to offsets, even
with augmentation: while it also achieves peak accuracy at offsets
close to those included in the training data, maximum accuracy de-
creases as 𝐾 increases. Thus, incrementing 𝐾 has the effect of stabi-
lizing the accuracy across different offsets while reducing it to very
low values. This may result from the combination of the attack’s
low-granularity input format and sensitivity (as shown through our
bandwidth augmentation experiments); in any case, we conclude
that our adapted attacks are most robust against differences in live
latency, particularly when utilizing our offset augmentation.

7.5 Combining Variable Bandwidth
Augmentation and Offset Augmentation

Since both evaluated challenges might be encountered at the same
time in the real world, we consider combining our proposed aug-
mentation techniques. To evaluate the combination, we apply offset
augmentation in the same way described previously to the resulting
traces of the variable bandwidth augmentation. Since vRF benefits
the most from offset augmentation, we only evaluate this attack
using both augmentation strategies. Similarly, we only use the
most effective version of the offset augmentation, 𝐾 = 4. Figure 11
presents the results of training on doubly augmented data and
evaluating on different offsets applied to each bandwidth scale.
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Figure 11: Accuracy of vRF with both offset and bandwidth
augmentation when varying the evaluation offset and band-
width conditions. Here, training datasets are along the y-axis
and evaluation datasets on the x-axis.

As in our offset augmentation experiments, vRF achieves similar
accuracy across all offsets. Accuracy is rather high in most cases,
and combining both augmentation strategies appears to afford the
attack additional benefits related to C2: in most cases, even the
minimum accuracy is slightly higher than the results reported in
Table 4 using only bandwidth augmentation. We attribute this to
vRF’s partial resilience to offsets without augmentation, which
likely allows it to better leverage training traces with both the same
and similar offsets as the trace being classified. Though accuracy is,
as before, low when training for higher bandwidth scales than the
victim’s, vRF performs remarkably well, even with limited epochs,
when training for identical or worse conditions.

8 Impact of Video-Related Data Limitations
Finally, we evaluate and discuss the effects of the video-related data
limitations outlined in Section 3.2.

8.1 Limited Observation Periods (L1)
Since the length of a video stream determines the amount of data
the attacker can use to characterize the corresponding network
trace, it is of interest to study and quantify the impact of limiting
the length of network traces. To do this, we iteratively reduce the
constant bandwidth dataset to include decreasingly long samples –
from 60 to 2 seconds – and measure the accuracy of our adapted
attacks and BnB for each sample length.

Since trace length is known to the attacker prior to training
and evaluation (i.e., the attacker determines how long to monitor
connections for), we opt to tailor the input matrix for the adapted
attacks to each considered length. We do this by maintaining the
same matrix dimensions but changing the sizes of the buckets.
In vRF, for example, the new buckets are 60/400 = 0.15 seconds
long when targeting 60-second traces and 30/400 = 0.075 seconds
against 30-second traces. We take the same approach for all sample
lengths with both vDF and vRF.
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Figure 12: Accuracy when introducing data limitations.
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Figure 13: Accuracy when varying the number of epochs.

Figure 12(a) shows the results. It is clear that vRF is outperformed
by both vDF and BnBwhen sample length decreases, particularly for
sample lengths shorter than 40 seconds, where accuracy begins to
deteriorate significantly; this is likely because we tune the buckets,
and vRF does not perform as well with high-granularity inputs, as
shown in Section 5.1. Both vDF and BnB maintain high accuracy
down to sample lengths of 20 seconds, with vDF performing the best
for even shorter samples. Regardless, longer observation periods
provide clear benefits with all attacks. This is in contrast to WF and
some other traffic analysis domains, where the majority of useful
features can be captured within a short time window.

8.2 Number of Training Samples (L2)
Gathering more traces for training represents another straightfor-
ward way for an attacker to increase the amount of training data.
We thus evaluate the effect the number of samples has on attack
accuracy. The constant and variable bandwidth datasets are of size
100 × 10 × 10 – as with trace length, we evaluate the effect of less
training data by iteratively decreasing the dataset size. We test from
100 × 10 × 10 down to 100 × 10 × 1, with decrements of 1, and we
further decrease the dataset size to 100× 3× 1 to more conclusively
capture the effect of dataset limitations.

Figure 12(b) shows the results. A significant reduction of the
sample count is evidently required to have a mentionable impact
on the accuracy of any of the attacks, but when the sample count
becomes extremely small, the accuracy of all attacks except for
BnB quickly deteriorates. BnB displays an impressive resilience to
this data limitation scenario, due in large part to the high number
of epochs selected, which allows the model to utilize each sample
more times in training and thus be more accurate when samples
are limited. As a rule, though, better accuracy can be achieved with
all attacks by gathering more training samples.

Table 5: Accuracy (%) of training and evaluating on the same
dataset with 200 epochs. We include the absolute accuracy
improvements (in green) over the baseline results reported
in Table 1 for 30 epochs, and the last two columns summarize
the “winning” model and its increases in accuracy over BnB.

vDF(200) vRF(200) Winner vs. BnB
Const 99.7 Δ1.5 100.0 Δ0.7 vRF(200) Δ0.1
Var-8 99.4 Δ2.8 99.7 Δ1.9 vRF(200) Δ2.1
Var-4 97.1 Δ2.2 97.9 Δ2.7 vRF(200) Δ5.4
Var-2 91.2 Δ5.3 93.7 Δ13.9 vRF(200) Δ20.0
Var-1 79.1 Δ9.3 86.0 Δ27.5 vRF(200) Δ34.4

8.3 Impact of More Epochs (L3)
Thus far, we have elected not to tune the epochs of our adapted
attacks to enable better comparisons with their default versions.
Compared to BnB, an attack aimed at characterizing video traces,
this value is very low. This raises the question of what impact in-
creasing the epoch count would have on our adapted attacks as well
as how severe the problem of overfitting is in video fingerprinting
as opposed to WF, since the risk of overfitting is the reason for the
low epoch value used by the website attacks [60, 62].

Figures 13(a) and 13(b) visualize attack accuracy as the number
of epochs increases for vDF and vRF, respectively. Regardless of
network conditions, the accuracy of both attacks increases with
the number of epochs. We also see no signs of overfitting, as attack
accuracy does not decrease even with a very large epoch count. To
verify this, we also evaluate epoch values of 5 000 and 10 000, finding
no noteworthy difference in accuracy compared to 600 epochs. This
shows that overfitting is not a problem for vDF or vRF with our
closed-world datasets, regardless of network conditions.

The Case for vRF with 200 Epochs: We find that using more
epochs is generally beneficial to our adapted attacks, including
when faced with challenges C2 and C3. To highlight the strengths
of the attacks, we next show example results using 200 epochs
for both vDF and vRF. This value is motivated by the diminishing
returns of using more epochs and the desire to limit runtime.

Table 5 presents the accuracies for vDF and vRF with 200 epochs
when training and evaluating under the same conditions (C1). Here,
we include comparisons (green delta values) with the case of 30
epochs. As shown, accuracy improves across the board, with the
most noteworthy difference being the massive increases for vRF in
poor conditions: in all cases, our adapted attacks (represented by
vRF) improve substantially over the previous state-of-the-art BnB.

While vRF with 200 epochs is not immune to performance degra-
dation when having to train on different network conditions than
those of the victim (C2), we find that it is more robust than the
other attacks. To see this, we refer to Table 6, which is presented in
the same format as Table 2 for direct comparison.

We also see that our adapted attacks, especially vRF, perform very
well with 200 epochs in combination with our two augmentation
techniques, addressing challenges C2 and C3, respectively. This is
illustrated by the big improvements reported in Table 7 and the
overall high accuracy seen in Figure 14. Here, it should again be
noted that vRF is the only attack able to excel in the presence of
offsets. These results make a clear case for using vRF for video
fingerprinting under both good and challenging conditions.
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Table 6: Accuracy (%) when training and evaluating under different bandwidth conditions when using 200 epochs for our
adapted attacks. These results provide a direct comparison with those reported in Table 2.

(a) vDF(200) (b) vRF(200)
Training Testing dataset Testing dataset
data ↓ Const Var-8 Var-4 Var-2 Var-1 Const Var-8 Var-4 Var-2 Var-1

Const 99.7 14.8 4.0 1.1 1.4 100.0 80.4 40.5 13.9 1.0
Var-8 99.5 99.4 85.8 40.7 13.8 99.7 99.7 91.7 44.8 19.8
Var-4 75.1 97.2 97.1 70.4 37.6 99.0 99.1 97.9 71.2 35.9
Var-2 29.7 94.3 94.9 91.2 59.3 89.2 96.8 97.1 93.7 66.0
Var-1 4.3 70.9 85.9 82.0 79.1 6.8 66.5 86.9 87.9 86.0

Table 7: Accuracy (%) of bandwidth augmentation and im-
provements over training on the constant bandwidth dataset
when using 200 epochs for our adapted attacks. These results
provide a direct comparison with those reported in Table 3.

Testing datasetAttack Training
dataset Var-8 Var-4 Var-2 Var-1
Const 14.8 4.0 1.1 1.4
Aug-X 87.6 81.2 65.5 38.5vDF(200)

+491.9% +1 930.0% +5 854.5% +2 650.0%
Const 80.4 40.5 13.9 1.0
Aug-X 97.5 91.2 69.7 37.6vRF(200)

+21.3% +125.2% +401.4% +3 660.0%

9 Conclusions
Despite the clear threat of video fingerprinting, understanding of
the effectiveness of these attacks in real-world scenarios has been
limited, as most research assumes ideal attack conditions. We have
addressed this gap by focusing on the unique challenges posed by
streaming traffic, particularly its dependence on client and network
states. Our work represents the first comprehensive study of video
fingerprinting attacks under challenging conditions.

Novel Attacks: By adapting two state-of-the-art website fin-
gerprinting attacks to video traffic and developing custom input
formats, we achieve notable improvements over existing video fin-
gerprinting techniques. The attacks are shown to benefit from more
training, with the best attack (vRF) surpassing the state-of-the-art
video fingerprinting attack (BnB) in almost all cases and establish-
ing a new benchmark for CNN-based video fingerprinting attacks.

Challenging Conditions and Impacts on Attack Accuracy:
By evaluating different deep learning model architectures against
video data collected under various network conditions, we quantify
the impact of adaptive bitrate streaming and live latency varia-
tions on attack accuracy. Our study provides valuable insights into
real-world limitations that an attacker is likely to encounter and
highlights the need to evaluate attack performance under more
challenging conditions than prior research has.

Augmentation-Based Attack Extensions: To enhance attack
performance under challenging conditions, we introduce two aug-
mentation approaches that significantly boost accuracy in variable
network environments and when the adversary lacks knowledge of
the victim’s live latency. These augmentations, applicable both sep-
arately and in combination, demonstrate remarkable performance
gains. In addition to addressing our considered challenges, the ran-
domness introduced in our bandwidth augmentation algorithm
mitigates the impact of limited training samples.
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Figure 14: Accuracy of offset augmentation with varying
evaluation offset and 200 epochs for our adapted attacks.
These results provide a direct comparison with Figure 10.

Impact of Data Limitations: Our analysis also highlights the
critical importance of data limitations, such as observation time,
dataset size, and training time. We show that high attack accuracy
can be achieved with limited samples over short durations and that
increasing the number of training epochs significantly enhances
the performance of our video-adapted attacks.

Selecting a Winner: Finally, while vRF outperforms the other
attacks in all of the primary scenarios we consider, we observe some
exceptions when network conditions are good but there are few
or short training samples: under such conditions (1) BnB is most
robust to cases with very few samples and (2) vDF is most robust
to short video samples. However, in all other cases, vRF is the clear
winner, as it outperform the other attacks when network conditions
are variable but known (C1) and in unknown bandwidth conditions
with and without augmentation (C2); also, it is much more robust
to offsets (C3) both with and without augmentation. Moreover,
it is clear that our augmentation techniques combined with our
video-adapted attacks, particularly vRF, always provide significant
accuracy benefits when faced with challenging conditions. These
considerable advancements over the prior state-of-the-art highlight
the significant privacy threat posed by video fingerprinting attacks
and stress the pressing need for effective defense techniques.

Code and Datasets: Our attack code and extended dataset can
be found at https://github.com/trafnex/video-augmentation.

Acknowledgments
We thank Matthias Beckerle and Tobias Pulls for discussions that
contributed significantly to the work presented in this paper. We are
also thankful to our shepherd Thorsten Strufe and the anonymous
reviewers for their feedback. This work was partially supported by
the Swedish Foundation for Strategic Research (SSF) and the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

https://github.com/trafnex/video-augmentation


Understanding and Improving Video Fingerprinting Attack Accuracy under Challenging Conditions WPES ’24, October 14–18, 2024, Salt Lake City, UT, USA

References
[1] Waleed Afandi, Syed Muhammad Ammar Hassan Bukhari, Muhammad U. S.

Khan, Tahir Maqsood, and Samee U. Khan. 2022. Fingerprinting Technique for
YouTube Videos Identification in Network Traffic. IEEE Access 10 (2022).

[2] Dilawer Ahmed, Aafaq Sabir, and Anupam Das. 2023. Spying through Your Voice
Assistants: Realistic Voice Command Fingerprinting. In Proc. USENIX Security.

[3] J.S. Atkinson, M. Rio, J.E. Mitchell, and G. Matich. 2014. Your WiFi Is Leaking:
Ignoring Encryption, Using Histograms to Remotely Detect Skype Traffic. In
Proc. IEEE Military Communications Conference (MILCOM).

[4] Sangwook Bae,Mincheol Son, DongkwanKim, CheolJun Park, Jiho Lee, Sooel Son,
and Yongdae Kim. 2022. Watching the Watchers: Practical Video Identification
Attack in LTE Networks. In Proc. USENIX Security.

[5] Alireza Bahramali, Ardavan Bozorgi, and Amir Houmansadr. 2023. Realistic
Website Fingerprinting By Augmenting Network Traces. In Proc. ACM Computer
and Communications Security (CCS).

[6] Alireza Bahramali, Ramin Soltani, Amir Houmansadr, Dennis Goeckel, and Don
Towsley. 2020. Practical traffic analysis attacks on secure messaging applications.
In Proc. Network and Distributed System Security (NDSS).

[7] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2018. Var-CNN:
A data-efficient website fingerprinting attack based on deep learning. In Proc.
Privacy Enhancing Technologies (PETS).

[8] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo Tofanelli.
2007. Revealing Skype traffic: when randomness plays with you. SIGCOMM CCR
(2007).

[9] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In Proc. ACM Computer and Communications Security (CCS).

[10] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online website
fingerprinting: Evaluating website fingerprinting attacks on tor in the real world.
In Proc. USENIX Security.

[11] Thilini Dahanayaka, Guillaume Jourjon, and Suranga Seneviratne. 2022. Dis-
secting traffic fingerprinting CNNs with filter activations. Computer Networks
(2022).

[12] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.
2013. NetworkProfiler: Towards automatic fingerprinting of Android apps. In
Proc. IEEE INFOCOM.

[13] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian
Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2020.
TrafficSliver: Fighting Website Fingerprinting Attacks with Traffic Splitting. In
Proc. ACM CCS.

[14] Xinhao Deng, Qilei Yin, Zhuotao Liu, Xiyuan Zhao, Qi Li, Mingwei Xu, Ke Xu,
and Jianping Wu. 2023. Robust multi-tab website fingerprinting attacks in the
wild. In Proc. IEEE Security and Privacy (S&P).

[15] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In Proc. USENIX Security.

[16] Meijie Du,Minchao Xu, Kedong Liu,Weitao Tang, Lijuan Zheng, and Qingyun Liu.
2023. Long-Short Terms Frequency: A Method for Encrypted Video Streaming
Identification. In Proc. Computer Supported Cooperative Work in Design (CSCWD).

[17] Ran Dubin, Amit Dvir, Ofir Pele, and Ofer Hadar. 2017. I Know What You Saw
Last Minute—Encrypted HTTP Adaptive Video Streaming Title Classification.
IEEE Trans. on Information Forensics and Security (TIFS) (2017).

[18] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
In Proc. IEEE Security and Privacy (S&P).

[19] Yanjie Fu, Hui Xiong, Xinjiang Lu, Jin Yang, and Can Chen. 2016. Service usage
classification with encrypted internet traffic in mobile messaging apps. IEEE
Trans. on Mobile Computing (2016).

[20] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In Proc. USENIX Security.

[21] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav: Gener-
ating Realistic Traces for a Strong Website Fingerprinting Defense. In Proc. IEEE
Security and Privacy (S&P).

[22] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2023. WFDefProxy:
Real World Implementation and Evaluation of Website Fingerprinting Defenses.
IEEE Trans. on Information Forensics and Security (TIFS) (2023).

[23] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen. 2018. Walls Have Ears: Traffic-
based Side-channel Attack in Video Streaming. In Proc. IEEE INFOCOM.

[24] David Hasselquist, Martin Lindblom, and Niklas Carlsson. 2022. Lightweight
fingerprint attack and encrypted traffic analysis on news articles. In Proc. IFIP
Networking.

[25] David Hasselquist, Christian Vestlund, Niklas Johansson, and Niklas Carlsson.
2022. Twitch Chat Fingerprinting. In Proc. IFIP Network Traffic Measurement and
Analysis Conference (TMA).

[26] David Hasselquist, Ethan Witwer, August Carlson, Niklas Johansson, and Niklas
Carlsson. 2024. Raising the Bar: Improved Fingerprinting Attacks and Defenses
for Video Streaming Traffic. In Proc. Privacy Enhancing Technologies (PETS).

[27] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In Proc. USENIX Security.

[28] Sébastien Henri, Gines Garcia-Aviles, Pablo Serrano, Albert Banchs, and Patrick
Thiran. 2020. Protecting against Website Fingerprinting with Multihoming. In
Proc. Privacy Enhancing Technologies (PETS).

[29] Dominik Herrmann, RolfWendolsky, and Hannes Federrath. 2009. Website finger-
printing: attacking popular privacy enhancing technologies with the multinomial
naïve-bayes classifier. In Proc. ACM Workshop on Cloud Computing Security.

[30] Andrew Hintz. 2002. Fingerprinting websites using traffic analysis. In Proc.
Workshop on Privacy Enhancing Technologies (PETS).

[31] James K Holland and Nicholas Hopper. 2022. RegulaTor: A Straightforward
Website Fingerprinting Defense. In Proc. Privacy Enhancing Technologies (PETS).

[32] Rob Jansen, Ryan Wails, and Aaron Johnson. 2024. A Measurement of Genuine
Tor Traces for Realistic Website Fingerprinting. arXiv:2404.07892 (2024).

[33] Zhaoxin Jin, Tianbo Lu, Shuang Luo, and Jiaze Shang. 2023. Transformer-based
Model for Multi-tab Website Fingerprinting Attack. In Proc. ACM Computer and
Communications Security (CCS).

[34] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A critical evaluation of website fingerprinting attacks. In Proc. ACM Computer
and Communications Security (CCS).

[35] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and MatthewWright. 2016.
Toward an efficient website fingerprinting defense. In Proc. European Symposium
on Research in Computer Security (ESORICS).

[36] Antonis Kalogeropoulos, Federica Cherubini, and Nic Newman. 2016. The Future
of Online News Video. Digital News Project (2016).

[37] Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Peta-
jan. 2017. BUFFEST: Predicting Buffer Conditions and Real-time Requirements
of HTTP(S) Adaptive Streaming Clients. In Proc. ACM Multimedia Systems Con-
ference (MMSys).

[38] Feng Li, Jae Won Chung, and Mark Claypool. 2018. Silhouette: Identifying
YouTube Video Flows from Encrypted Traffic. In Proc. ACM SIGMM Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV).

[39] Jianfeng Li, Shuohan Wu, Hao Zhou, Xiapu Luo, Ting Wang, Yangyang Liu, and
Xiaobo Ma. 2022. Packet-Level Open-World App Fingerprinting on Wireless
Traffic. In Proc. Network and Distributed System Security (NDSS).

[40] Ying Li, Yi Huang, Richard Xu, Suranga Seneviratne, Kanchana Thilakarathna,
Adriel Cheng, Darren Webb, and Guillaume Jourjon. 2018. Deep Content: Unveil-
ing Video Streaming Content from Encrypted WiFi Traffic. In Proc. IEEE Network
Computing and Applications (NCA).

[41] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,
Nicholas Hopper, and Matthew Wright. 2023. SoK: A critical evaluation of effi-
cient website fingerprinting defenses. In Proc. IEEE Security and Privacy (S&P).

[42] Asya Mitseva and Andriy Panchenko. 2024. Stop, Don’t Click Here Anymore:
Boosting Website Fingerprinting By Considering Sets of Subpages. In USENIX
Security.

[43] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2021. Defeating DNN-
Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturba-
tions. In Proc. USENIX Security.

[44] Nic Newman, Richard Fletcher, Kirsten Eddy, Craig T. Robertson, and Ras-
mus Kleis Nielsen. 2023. Digital News Report. Reuters Institute for the study of
Journalism (2023).

[45] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A BespokeWebsite
Fingerprinting Defense. In Proc. ACMWorkshop on Privacy in the Electronic Society
(WPES).

[46] Se Eun Oh, Nate Mathews, Mohammad Saidur Rahman, Matthew Wright, and
Nicholas Hopper. 2021. GANDaLF: GAN for data-limited fingerprinting. In Proc.
Privacy Enhancing Technologies (PETS).

[47] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In Proc. Network and Distributed System Security (NDSS).

[48] Mike Perry and George Kadianakis. 2020. Circuit Padding Developer
Documentation. https://github.com/torproject/tor/blob/main/doc/HACKING/
CircuitPaddingDevelopment.md.

[49] Pew Research Center. 2023. Social Media and News Fact Sheet. https://www.
pewresearch.org/journalism/fact-sheet/social-media-and-news-fact-sheet/.

[50] Tobias Pulls. 2020. Towards Effective and Efficient Padding Machines for Tor.
arXiv:2011.13471 (2020).

[51] Tobias Pulls and Ethan Witwer. 2023. Maybenot: A Framework for Traffic Analy-
sis Defenses. In Proc. ACM Workshop on Privacy in the Electronic Society (WPES).

[52] Darijo Raca, Jason J Quinlan, Ahmed H Zahran, and Cormac J Sreenan. 2018.
Beyond throughput: A 4G LTE dataset with channel and context metrics. In Proc.
ACM Multimedia Systems Conference (MMSys).

[53] Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and MatthewWright.
2021. Mockingbird: Defending against deep-learning-based website fingerprint-
ing attacks with adversarial traces. IEEE Trans. on Information Forensics and
Security (TIFS) (2021).

[54] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. Tik-Tok: The Utility of Packet Timing in

https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://www.pewresearch.org/journalism/fact-sheet/social-media-and-news-fact-sheet/
https://www.pewresearch.org/journalism/fact-sheet/social-media-and-news-fact-sheet/


WPES ’24, October 14–18, 2024, Salt Lake City, UT, USA August Carlson, David Hasselquist, Ethan Witwer, Niklas Johansson, & Niklas Carlsson

Website Fingerprinting Attacks. In Proc. Privacy Enhancing Technologies (PETS).
[55] Andrew Reed and Benjamin Klimkowski. 2016. Leaky streams: Identifying

variable bitrate DASH videos streamed over encrypted 802.11n connections. In
Proc. IEEE Consumer Communications & Networking Conference (CCNC).

[56] Andrew Reed and Michael Kranch. 2017. Identifying HTTPS-Protected Netflix
Videos in Real-Time. In Proc. ACM Conference on Data and Application Security
and Privacy (CODASPY).

[57] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In Proc.
Network and Distributed System Security (NDSS).

[58] Sandvine. 2024. 2024 Global Internet Phenomena Report. https://www.sandvine.
com/global-internet-phenomena-report-2024.

[59] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. In Proc. USENIX Security.

[60] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Sub-
verting Website Fingerprinting Defenses with Robust Traffic Representation. In
Proc. USENIX Security.

[61] Meng Shen, Yiting Liu, Liehuang Zhu, Xiaojiang Du, and Jiankun Hu. 2020.
Fine-grained webpage fingerprinting using only packet length information of
encrypted traffic. IEEE Trans. on Information Forensics and Security (TIFS) (2020).

[62] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In Proc. ACM Computer and Communications Security (CCS).

[63] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and MatthewWright.
2019. Triplet Fingerprinting: More Practical and Portable Website Fingerprinting
with N-shot Learning. In Proc. ACM Computer and Communications Security
(CCS).

[64] Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE MultiMedia (2011).

[65] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2018.
Robust Smartphone App Identification via Encrypted Network Traffic Analysis.
IEEE Trans. on Information Forensics and Security (TIFS) (2018).

[66] Alexander Vaskevich, Thilini Dahanayaka, Guillaume Jourjon, and Suranga
Seneviratne. 2021. Smaug: Streaming media augmentation using CGANs as
a defence against video fingerprinting. In Proc. IEEE Network Computing and
Applications (NCA).

[67] Tim Walsh, Trevor Thomas, and Armon Barton. 2024. Exploring the Capabilities
and Limitations of Video Stream Fingerprinting. In Proc. IEEE Security and Privacy
Workshops (SPW).

[68] Chenggang Wang, Jimmy Dani, Xiang Li, Xiaodong Jia, and Boyang Wang. 2021.
Adaptive Fingerprinting: Website Fingerprinting over Few Encrypted Traffic. In
Proc. ACM Conference on Data and Application Security and Privacy (CODASPY).

[69] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In Proc.
USENIX Security.

[70] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In Proc. USENIX Security.

[71] XinyuanWang, Shiping Chen, and Sushil Jajodia. 2005. Tracking anonymous peer-
to-peer VoIP calls on the internet. In Proc. ACM Computer and Communications
Security (CCS).

[72] Ethan Witwer, James K Holland, and Nicholas Hopper. 2022. Padding-only
defenses add delay in Tor. In Proc. ACM Workshop on Privacy in the Electronic
Society (WPES).

[73] Hua Wu, Zhenhua Yu, Guang Cheng, and Shuyi Guo. 2020. Identification of en-
crypted video streaming based on differential fingerprints. In Proc. IEEE Computer
Communications Workshops (INFOCOM WKSHPS).

[74] Luming Yang, Shaojing Fu, Yuchuan Luo, and Jiangyong Shi. 2020. Markov
probability fingerprints: A method for identifying encrypted video traffic. In Proc.
Mobility, Sensing and Networking (MSN).

[75] Xiaokuan Zhang, Jihun Hamm, Michael K Reiter, and Yinqian Zhang. 2019.
Statistical privacy for streaming traffic. In Proc. Network and Distributed System
Security (NDSS).

[76] Xiyuan Zhang, Gang Xiong, Zhen Li, Chen Yang, Xinjie Lin, Gaopeng Gou, and
Binxing Fang. 2024. Traffic spills the beans: A robust video identification attack
against YouTube. Computers & Security (2024).

https://www.sandvine.com/global-internet-phenomena-report-2024
https://www.sandvine.com/global-internet-phenomena-report-2024

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Traffic Analysis
	2.2 DASH Streaming
	2.3 Video Fingerprinting

	3 Challenges and Data Limitations
	3.1 Primary Video Fingerprinting Challenges
	3.2 Impact of Video-Related Data Limitations
	3.3 Other Challenges

	4 Datasets
	5 Evaluated Attacks
	5.1 WF Attacks
	5.2 Video-Adapted Versions of WF Attacks
	5.3 Video Fingerprinting Attack

	6 Evaluated Conditions
	6.1 Good Constant Bandwidth Conditions
	6.2 Known but Variable Bandwidth (C1)
	6.3 Unknown and Variable Bandwidth (C2)
	6.4 Offset (C3)
	6.5 Variable Bandwidth and Offset (C2 + C3)

	7 Augmentation-based Attack Extensions and Their Improvements
	7.1 Variable Bandwidth Augmentation
	7.2 Bandwidth Augmentation Evaluation
	7.3 Offset Augmentation
	7.4 Offset Augmentation Evaluation
	7.5 Combining Variable Bandwidth Augmentation and Offset Augmentation

	8 Impact of Video-Related Data Limitations
	8.1 Limited Observation Periods (L1)
	8.2 Number of Training Samples (L2)
	8.3 Impact of More Epochs (L3)

	9 Conclusions
	Acknowledgments
	References

